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A method for numerical simulation of the hydrodynamic parameters of a gas-liquid medium with allowance 

for its weak compressibility is proposed. Application of the method is illustrated by the example of the 

calculation of the hydrodynamics of a melt in a ladle during its filling and the blow. 

Gas-liquid media can be encountered at all stages of steel production beginning with melting in converters 

upon their blow [1 ] and ending with out-of-furnace processing in ladles and casting where air penetration to the 

melt with the flow [2 ] or an inert gas being blown into a ladle at the stage of out-of-furnace processing [3 ] should 

be taken into account. A number of experimental investigations of the behavior of gas-liquid media under various 

conditions corresponding to the above-enumerated processes have been carried out in this context [4-6 ]; in 

addition, a series of mathematical models has been developed that make it possible to describe numerically the 

melt hydrodynamics with allowance for to the gas phase in both steel tapping (casting) [7 ] and the blow: within 

the Boussinesque approximation [8 ] and using more complicated model assumptions [9 ]. 
However, all known mathematical models including the above-enumerated ones do not account for an 

important property of the gas-melt medium, namely, its compressibility, which is a result of the considerable density 
of the melt. The high density of the melt results in relatively high pressure gradients in its volume. Thus, the 

ferrostatic pressure in a steel melt reaches atmospheric pressure at a depth of about 1.5 meters, whereas the melt 

level in the ladle can be as high as four or five meters. In this case a gas bubble floating from the bottom of the 

laddie up to the melt surface increases its dimensions approximately threefold. At the same time, air bubbles 

entrapped by the melt flow in the filling of ladles and ingot molds are compressed as they when get deeper into 

the melt, which decreases the volume gas content a of the melt and alters its hydrodynamic parameters. The 

dependence of a not only on the ferrostatic but also, most likely, on the dynamic pressure in the gas-melt medium 

can in certain cases affect its dynamics, for example, in studies of the action of the gas-liquid flow on the bottom 

of a ladle when it is filled. 
From the preceding, both the physical models for water and the mathematical models being in reasonable 

agreement, mathematical models can produce incorrect results in the case of gas-melt media as a result of disregard 

for their compressibility. 
In the present work a mathematical model is proposed for numerical investigation of the hydrodynamics 

of gas-liquid media at small gas content coefficients when the gas-liquid medium is weakly compressible. Here, as 

in [7 ], we assume continuity of the medium, the equations for which we write in a zero-order approximation in 

pl/PO [10]: 

a v  1 
o-T+ ( v v ) v  = - Vp + a v + g ,  (1) 

+ v (ov) = o (2) 
Ot 
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In this case the velocity of the medium V coincides with the velocity of the liquid phase; p = (1 - a)po, and the 

inertial properties of the gas phase can be neglected, which allows us to use a diffusion approximation by 

complementing Eqs. (1) and (2) with the equation of mass conservation of the gas phase: 

do' + V (p' (Y + W)) = 0 (3) 
Ot 

where p'  = apl  is the density of the gas phase in the gas-liquid medium and the expression for the velocity of the 

gas phase with respect to the melt [11 ] W = - g / g W ,  where (in terms of our approximation p l /pO --, O) 

( o. _,.,,). rb,oo (4) 

Expression (4) agrees well with experimental data on a single bubble floating up in both water [ 11 ] and a steel 

melt [12]. However, in order to apply this expression to the description of a gas-liquid medium one should 

determine experimentally the average radius of the gas-phase bubbles rb, which depends on a number of factors, 

including the character of the flow. Therefore, in a number of cases, the value of W should be set based on various 

assumptions. 

The assumption of the insignificance of a makes it possible to write Eqs. (1) and (2) within the 

Boussinesque approximation 

0..._VV + (VV) Y = - Vp" + VelAr + (1 - a) g 
Ot 

(5) 

VV = 0 ,  (6) 

taking into account the presence of the gas phase solely in buoyancy forces. In the present work an algebraic model 

of turbulence [13 ] is used in which the effective coefficient of kinematic viscosity Vef is determined by the expression 

I vl Vef = V "t" ~ d  V't- (bd)2 "~y , (7) 

which contains two parameters, d / R e  d and bd (when solving Eqs. (5) and (6) numerically, d is chosen to be equal 

to the subinterval of the spatial grid, and two parameters, the local, or grid Reynolds number Red, and b, the ratio 

of the mixing length to the grid subinterval, are used as turbulence parameters). 

In deriving the equation for a we take into account that the gas present in the liquid obeys the state equation 

Pl -~ P(P) (dependences on the temperature and other factors are not taken into account) and the pressure p does 

not depend on time explicitly. Then we obtain from expression (3): 

0a 
o-7 + v (v  + w) )  = - (p) (v  + w )  Vp,  (8) 

where ~ -- 01np 1/Op. Thus, the transport equation for the coefficient of the volume gas content a includes the source, 

which is proportional to a,  the scalar product of the gas phase velocity V + W and the pressure gradient Vp, and 
the state equation-dependent ~ factor, which equals zero within the approximation of the gas phase incompressibility 

Pl = const. For a polytropic process 

Pl = const p l / r  (9) 

and ~ = 1/yp,  which will be assumed from this point on. At low pressure gradients, which take place when the 

liquid phase density is relatively small and flow is relatively steady, which is realized, e.g., in most gas-water filling 

and blow models under laboratory conditions, the source term in Eq. (8) can be neglected. In the case of gas-melt 
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media, the pressure gradients are significant, as a rule, and the influence of the source term in (8) becomes 

nonnegligible. 

Equations (5), (6), and (8), which have been supplemented with expressions for the effective coefficient 

of turbulent viscosity Vef and the gas phase velocity with respect to the liquid phase W, and the gas state equation, 

which can be chosen, e.g., in the form of (7), (4), and (9), form a complete system of equations for description of 

the dynamics of a weakly compressible gas-liquid system. 

The presence of pressure in the source term for a is an argument in favor of employment of the natural 

velocity-pressure V - p  variables in solving system (4)-(9). In this case we use the combined splitting method 

described in [7], which combines the advantages of the method of splitting over physical factors [14], for the 

hydrodynamic equations and the scaling difference scheme [ 15] for the equation of the convective gas concentration 

transfer. According to this method, the numerical solution of system (4)-(9) is performed in three stages: 

I) V = V  n + r t - ( v n V )  v n + % f A v  n + ( 1 - a  n ) g ] ;  (10) 

n (i1) ~" = a - r ( V " V )  a n ; 

II) A~" = V'V/~ ; (12) 

III) V n+l  = V -- TWp'; (13) 

n+1 n (14) a =ct - r  [ ( vnv )~ '+~ ' (V  n + W )  Vpn/Yp n 1, 

where f n is the value of the function f at time nr. The difference approximation of the right sides of expressions 

(10)-(14) is performed on a staggered grid by the conventional method [13 ]. 

The method proposed was used for calculations of the hydrodynamics of a melt in a ladle in two cases: 

with its filling and blowing with a inert gas via a slide gate. In both cases cylindric symmetry was assumed and 

cylindric coordinates were used. The programs for the calculations were coded in Pascal for an IBM PC. The 

turbulence parameters were taken as follows: Red -- 2, b = 0.05, and the polytropic exponent y -- 1, which corresponds 

to an isotherm. 
In the problem of ladle filling, the boundary conditions for all quantities being calculated were set as in 

[7 ] and, as in [7 ], it was assumed that W = 0. 
Preliminarily, in order to verify the adequacy of the model, a series of calculations of tank filling with water 

for regimes corresponding to those reported in [7 ] was~arried out. In this case, as was assumed, results virtually 

coincident with the results of calculations presented in [7 ] were obtained. This, on one hand, substantiates the 

adequacy of the proposed method for description of the hydrodynamics of an air-water medium with a relatively 

steady flow (in the particular case, upon filling the tank), and, on the other hand, it is shown that compressibility 

of a gas-liquid medium does not manifest itself under these conditions, and simpler methods which do not account 

for compressibility can be used to describe its behavior. 
Compressibility of the gas-liquid medium manifests itself if the ladle is filled with a steel melt. As a result 

of the high melt density (7000 kg/m 3) and significant penetration depth of the gas-liquid flow (several meters), 

its compressibility in this case affects the calculation results. Calculations were carried out for a 350-ton ladle with 

the following dimensions: mean radius R = 1.9 m and metal level H = 4.9 m. The effective radius of the flow was 

taken to be Rn = 0.15 m, and the fraction of air injected by the flow a0 = 0.7. The velocity of submerging of the 

flow for an almost completely filled ladle Vrl = 8 m/sec. 
Results of the calculations for this case are presented in Fig. 1. In this figure, as in the ensuing one, the 

curves plotted with solid lines are related to the method proposed in the present paper, which accounts for the 
compressibility of the medium (version A). In order to reveal the role of compressibility of the medium the results 
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Fig. 1. Hydrodynamics of melt in ladle at the final filling stage. Vz, m/sec. 

of calculations obtained under the assumption of its incompressibility are presented with dotted lines (version B). 

Figure 1, I presents the velocity and concentration fields, whereas Fig. 1, H plots the dependences of the vertical 

components of the melt velocities Vz on height z at the values of r marked in Fig. 1, I by letters. The corresponding 

dependences in Fig. 1, H are labelled with the same letters. The scale of the z axis in both halves of the figure is 

the same. It follows from calculations that the character of the melt motion in the ladle is, as a whole, much the 

same for versions A and B and the field of motion directions of the melt depicted in the figure by arrows virtually 

coincides for both of the versions. The difference in versions A and B starts to manifest itself in the field of the 

gas phase concentrations, which is presented in Fig. 1, I as a set of lines of equal gas concentrations corresponding 

to the following values: 1) 0.6; 2) 0.5; 3) 0.25; 4) 0.05. Whereas for relatively large values of the gas content 

coefficient a (curves 1 and 2), version A results i n , . f a s t e r  decrease in a with depth, and curves 3 and 4, 

corresponding to large a, lie somewhat higher. This is due to the fact that at high a the compressibility of the 

gas-liquid medium is more pronounced than at small a. As a result, the total gas content in the flow is lower in 

case A, and the buoyancy force exerts a smaller braking action than in case B. This leads to deeper flow penetration 
in case A, which explains the lower disposition of the isolines of small a (when the medium is weakly compressible) 

for the version A. This is substantiated by Fig. 1, 11, from which it follows that the maximum difference in the 

values of the melt velocities for versions A and B is observed at the depth corresponding approximately to the 

maximum penetration depth of the melt flow, and the closer to the symmetry axis, the greater the difference. The 

velocities for both versions virtually coincide with each other at distances from the ladle axis greater than half a 

radius. Attention is drawn to the coincidence of all curves (isolines of a and velocity plots) in the upper portion of 
the ladle. This suggests that the entire difference between the versions under consideration is due in this case to 

the ferrostatic pressure, which is substantiated by a control calculation with the dynamic pressure switched off 
when calculating the source term in the Eq. (8). 

In the case of the blow problem, the boundary conditions on the inner ladle surface and on the free melt 

surface (on which the flow is now absent) are set in the same fashion as in the previous case. At the entry point 
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Fig. 2. Hydrodynamics of melt in ladle upon the blow. 

of the gas flow at the ladle bottom, a zone of flow breakage can be selected outside which the flow is bubbling. The 

dimensions of this zone virtually do not affect the results of calculations for the rest of the ladle and at flow rates 

q of the gas close to 1 ma/min, for which the results of calculations are presented in this work, it takes up several 

cells of the calculation grid. Calculations are performed within the entire volume of the ladle, including the selected 

zone, however, it is assumed that a gas-phase source acts within this zone whose intensity ~s determined by the 

quantity q. The velocity of the gas phase relative to the melt W in this case can be assumed to be equal with high 

confidence to 0.5 m/sec [6, 12 ]. 
Results of calculations of the ladle blow are presented in Fig. 2. Here the difference in versions A and B 

is even more pronounced. Whereas the general character of motion, which is determined by the field of velocity 

directions, is the same in both cases, as in the previous case, the fields of the gas phase concentration differ 

substantially. Figure 2, I presents the lines of equal concentrations for the following values of a: 1) 0.5; 2) 0.2; 3) 

0.05; 4) 0.01. The entire difference between A and B can easily be explained by the expansion of bubbles upon 

floating up, which results in an increase in the buoyancy force acting on the gas flow, which leads to an additional 

increase in its velocity (Fig. 2, I/). The greater difference of version A from B in the case of the blow compared 

with the case of filling is explained first of all by the fact that in this case bubbles overcome a greater pressure 

difference, since they move here from the bottom to the melt surface. 
The results presented show that taking into account the compressibility of the gas-melt medium results in 

an improvement in the accuracy of determination of melt velocities by about 10% in the case of filling and blowing 

of the ladle. It is evident that the values of other parameters that affect substantially the results of the calculations 

such as, e.g., turbulence parameters or the gas phase velocity W with respect to the melt, should provide such 
accuracy. Otherwise the compressibility of the gas-melt medium can be neglected. However, as a result of the more 

substantial difference in the gas content coefficients in versions A and B, the consideration of compressibility can 
affect substantially other parameters, e.g., thermal characteristics. 

630 



It should be noted that the equation of state (9) adopted in the present work can be generalized. One can, 

for example, account for the possibility of the collapse of a gas bobble upon approaching the critical pressure. In 

this case the source term in Eq. (8) acquires an additional component proportional to the product of a and the 

substantive derivative of temperature. Refinement of the expression for the diffusion velocity of the gas phase W 

as a function of the character of the motion of the medium (the velocity of the medium and its derivatives, and 

turbulence parameters) also seems to be important. These questions appear to be important in solving certain 

problems of heat and mass transfer from the area of steel metallurgy, and we are going to consider them in the 
future. 

C O N C L U S I O N S  

1. The numerical method proposed allows us to describe adequately the motion of gas-liquid media of 
arbitrary density (including the cases when melts are used as a carrier liquid) at small coefficients of the volume 
gas content within the approximation P l / P o  ffi O. 

2. The method considered can be used, for example, in studies of the hydrodynamics of a melt in a ladle 
upon its filling and blowing. In this case it is sufficient to account for just the atmospheric and the ferrostatic 
pressures, whereas the dynamic pressure can be neglected. 

N O T A T I O N  

V, V, velocity of the medium and its value; W, diffusion velocity of the gas phase; g, free fall acceleration; 

P, P0, Pl, densities of the medium, the liquid, and the gas phases; p, pressure; ~" = p / p ;  a0, a, /z,  v, cr, coefficients 
of the gas content in the flow, gas content in the medium, dynamic and kinematic viscosity, surface tension; Vef, 

effective dynamic viscosity coefficient; Red, b, its parameters: the grid Reynolds number and the ratio of the mixing 
length to the grid subinterval; y, polytrope exponent; R, H, radius and height of the tank; Rn, radius of the flow; 
r, time step; d, grid subinterval. 
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